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We investigate the existence and also the number of possible stationary operating regimes of continuous
reactors of finite length with a fixed fine-grained catalyzer layer. It is assumed that the effective chemical
reaction rate is expressed by a single-valued function of very general form of the temperature and
concentration of the primary component in the stream. It is shown in section 1 that in an adiabatic reactor
the solution of the direct and inverse problems of finding the stationary regimes always exists and for the
inverse problem the solution is unique. In section 2 we establish some sufficient conditions for the
uniqueness of the direct problem for the case in which the effective thermal conduction and diffusion
coefficients are equal. In section 3 we examine a very simple diffusion model of a reactor with heat
removal. An attempt is made to determine the region of variation of the parameters (characterizing the
temperature of the supplied mixture, its input rate, heat removal and reactor length) in which the various
stationary regimes exist, in particular the low and high temperature regimes and also both of these
regimes together.

1. The stationary regimes of the adiabatic reactors in question are usually described [1-3] by the following
equations (we have introduced the unknown parameter v, which characterizes the temperature at the exits from the
layer, for purposes of the subsequent investigation):
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Here T is temperature; T' is a characteristic temperature (for example, T_); C is the concentration of the
primary component in the reacting mixture; T. and C_ are the temperature and concentration far ahead of the
catalyzer layer; w is the filtration velocity; F = 0 and H are the effective rate and thermal effect of the chemical
reaction; pc¢ =const is the heat content per unit volume; % and D are the effective longitudinal thermal conduction and
diffusivity; L is the length of the catalyzer layer; T+ is the temperature at the exit from this layer (an unknown
quantity).

From (1.1) and condition (1.2) follows

d d
a—({é——}-b——ig——u—v—)-—'%n-zo. (1.4)

From (1.4) on the basis of (1.3) we find that v=u,, (1 —y)/y for £ =0. Since v = 0, then 0 <y <1 If we take u as
the independent variable, p= du/dg, and v and § as the sought functions, and if in place of the second equation of (1.1)
we take (1.4), then problem (1.1)—(1.3) can be written in the form

Ap _py—flwr, o) dv (udv—ap)y—upy €t (1.5)
du — apY ’ du “—‘&.‘E‘y—“’ —dT:—IT ’

U=y, p=20, v=1u, 1 — Wy, =0 (1.6)

u= ap, &= —I. (1.7)

The last condition in (1.2) is satisfied automatically, since it is taken into account in (1.6).
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For any smooth, single-valued function f(uv, vy), satisfying

f=8j/ou=0, a7 /60 >0 for vy=0; 0 < f < oo for 0 <oy oo (0Cuy <ty (1.8)

(we first assume that H > 0) we show that:
a) the inverse problem {y given, I to be found) for the system (1.5) — (1.7) always has a unique solution;

b) the direct problem (I given, y to be found) always has a solution, and for the semi-infinite reactor (i == ) it is
unique.

For given v problem (1.5}, (1.6) is the Cauchy problem. At the point
U= Uy, p=0, v=0p= Uy, (1 —~9) /79, E=0

there is a singularity (the numerator and denominator in the second equation of (1.5), and for ¥ =1 in the first equation
as well, vanish). If v =1 this is a singular point. From this point there emanate three integral curves each for p, v,
and &, two of which yield £ > 0, which contradicts condition (1.7). There remains one pair of curves with slopes

0 <k <co and 0< k< oo (on the basis of (1.8)), yielding near u = uyg,

P:kl(um“‘“u)yU=k2(“m—”),§=:_.oo. (1.9)

If 0 <y<1, we write the first two equations of (1.5) relative to the derivatives du/dp and dv/dp. The right-hand
sides in the resulting equations vanish for u = u,,, v= u,, p= 0 and have no singularities. If we seek the solution of these
equations in the vicinity of uy, in the form of series in p, then after converting to the original variables and by analogy
with the preceding analysis discarding the solution with ¢ > 0, we obtain the following expressions for p (u,y),v (1, 7} and
& (2, 7) near u = uy, {to within infinitesimals of higher order):

=V, Jat (ty—w" v=0,4a/blu_ —u) (1.10)
E=— V21 [y — W (Fy=F (w1, 2,0), v, =u, (1—1)/7)

In accordance with (1.9), (1.10) the curves of p and v are positive near u = uy, and retain this sign for 0 < u < up,
since otherwise there would be a point where either p=10, dp/du >0, »>0, Or p=0, dv/du >0, p >0, which contradicts
(1.5). Since p>0, 0 < { < =, the curve p{u,y) must of necessity reach the straight line p = u/e (in accordance with (1.5)
it cannot turn or have a vertical asymptote) and cross this line ounly once, since — co < dp/du < 1/a in accordance with
(1.5).

Thus for any given 0 <y <1 the solution of the problem (1.5), (1.6) exists and yields the unique values

uo (1) = ap (0,130, 1(N)=—E[uo(x), 1] = S >0, (1.11)

3l

i.e., the inverse problem (1.5)—(1.7) has a unique solution (uy will be the value of u at the entrance to the layer).

We note that in the design of reactors the solution of the inverse problem is meaningful, since it yields the value
of the reactor length for which there exist regimes with given maximum temperature or the required quantity of the
resulting product.

According to (1.9}, for v = 1 I= . According to (1.10), asy —~ 0, p — < near Upy; hence uy— u,, I= —& () > 0.
The solution of problem (1.5), (1.6) depends continuously on the parameter y. Therefore, with variation of ¥ from 0 to
1 the quantity I fills the interval [0, =l continuously, i.e., for any [ = 0 there is always at least one value of 0 <y <Y,
for which problem (1.5)-(1.7) has a solution. For 1= « this value {y = 1) will be unique, since if y # 1, then according
to (1.10), (1.11). 1< ec

Thus, in the adiabatic reactor of arbitrary length { there is always at least one, and for = « only one stationary
regime. '

268



In the case H < 0 this analysis remains completely valid except that

o < <0, 1y <O, Uy <u<O, v<O, p<O (H <O

2. As is known [4,5], the direct problem may not be unique. Let us establish for a = b the sufficient conditions
for its uniqueness. (Other sufficient conditions, effective for small @ or I, were obtained in [6] with the aid of the
eigenvalue problem.)

Integrating (1.4) relative to u + v with the use of condition (1.3), we obtain v=u,, / y ~ z. Then the system (1.5)~
(1.7) takes the form

dp _ pr—o@) A1
T apy c dwT p @1
u= iy, p=0,5=0 w=ap, E=—1. (2.2}

Differentiating (1.11)} and (2.1) with respect to y; we obtain

dl 3 ds duy apy (ual¥

b= =~ (0 s U o B = = B )=y (2.3)

dp X (uy) | 9, dE, Py { ap
W=t b WS \R=or) 24
@ =9 @) —o @) O<Eupy, F=uy). {2.5)

According to {1.10), in the vicinity of u = uy for o <y <1
g — s = a) \Vs

py= (\—Z;;,”—‘%Y—';) % (wmY), E,= (5%"—3;9) % (1) (P =@ (um)). (2.6)

If 20 <0 for 08 < uyy, then in accordance with (2.6) p, <0, t, <0 near u = umy and if thereafter these
inequalities are violated, there would be a point u® where Py u0) >0, dp, () / du <0 OF p (w9 0, dE (u9) / du < 0, Which
contradicts (2.4). Consequently, if x(8) <0 for 0<9<u,r, thenp <o, £, <0for0<u <u,r, hence imn accordance with
(2.3) 1, 0 > 0. ¥ x (<0 for 0 < B << uy, then 2, >0 for all 0 <y <L, i.e., L(y}is a monotonic function and consequently
there is a unique solution 0 <y <1, which provides the given 1 > 0.

Thus, if x () <0 0 < <uy), i.e.,

sup [p" (8) — @ (8)/8]1 <0, S &0, w,), (2.7

then the solution of the direct problem (2.1), (2.2} is always unique, i.e., in a reactor of arbitrary length I for any a
there exists a unique stationary regime.

For small 4 the function x (8) <0, therefore the condition (2.7) is equivalent to the absence of (real) odd multiple
roots of % (8).

Thus, for example, in the classical case in which
PO)=1r(uyp — W expld/ (1 +b8)] (by=RT_/E, T0= RT_*|E), (2.8)
the roots of the function y () are
B = [uy, — 2bp = (uy, — by, — 472102 (Bolty, — 1] (2.9)

It follows from (2.9) that if w, <4/t — 45,), then x (8 has no roots of odd multiplicity, i.e., the solution of the
direct problem will be unique in this case,

The equation % (8) = 0 is equivalent relative to & to the system o (8)= 49, dp/d% = 4 which defines the tangents to

the curve ¢ (9), passing through the coordinate origin, where the tangent at the inflection point corresponds to the roots
of even multiplicity. Therefore, for uniqueness of the stationary regimes it is sufficient that there be no rays from the
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coordinate origin which cross the curve ¢ (4 ) at more thanone point. (Thus we have Fig. 1forthe case (2.8).) This statement
can be interpreted as follows: the heat release at each reactor section is determined by the function ¢ (8), and the heat
removal (into the supplied mixture) can be considered to be roughly proportional to 4. Therefore the number of possible
stationary states of the reactor will then be no more than the maximum number of points of intersection which the
curve ¢ (8) can have with a ray from the coordinate origin.

In the case ¢ (3)<0 the condition that the sign of the function % (%) be constant for & < [u,, 0] is equivalent to
condition (2.7), and all the conditions which follow therefrom also will be sufficient for uniqueness of the direct
problem (2.1), (2.2). In this case the above analysis is still valid, except that u, <0, u <z <0, p<0.

3. Now let us examine the case in which the function ¢ (uy) in (2.1) can change sign. This occurs, for example,
for reactors with heat removal. In this case problem (2.1), (2.2) results from seeking the stationary regimes in the
case of zero-order reaction (when, for example, no account is taken of the decrease of the active substances along the
reactor length, which aids in evaluating the conditions for which combustion will obviously not take place), and also
when the C and T fields are similar (which assumes continuous input of the reagents and partial removal of the reaction
products through the walls). In this case we use the one-dimensional model, i.e., we assume that either there is ideal
transverse mixing or the heat removal is acecomplished directly from the reaction zone [1,2], or averaging of the
equations with respect to the transverse coordinate is performed [1,7]. A similar problem for the semi-infinite
chamber (I — ) was examined in [7]. In the present case the problem can be written in the form

d, — (0 dl 1 1
=20, E—t. vO=00-7F (3.1

e=e+!P=0!§=0; e=ap+e_.1§:'—lv (3.2)
O= (T — Ty)/ I, @ (8) = vF (T) / pCI°, 1/8= aSt/pec
0, = (T, — To)/ 1% 0_=(T_— To) I% T0= RT3/ E, 1/ 1= F (To) / pel”).

Here Ty is the temperature at the heat-removing surface, S is the area of this surface per unit layer volume, «
is the effective heat removal coefficient, r (1) » 0 is the heat release rate, Ris a universal constant, E is the
activation energy.

Usually, for example in the case of the Arrhenius dependence of the chemical reactor rate on T, the function

@ (0) has the form shown in Fig. 1 (the form of @ (8 for a zero-order reaction is shown by the dashed curve to
markedly reduced scale). Therefore we assume for simplicity that

@” (8 > 0for 8< 0™, @ (6) <0 for 6 >0~
| @ (©)] < ; lim 82 @ (8) = 0 for 8 — oo

(in the case in which T and C are similar we have @ (8,) = 0, 6 < 6,,).
Then for & « & < 8+ the function v (6) has three roots 0 < 8, <8 <18, (Fig. 1), where the roots o, 6; diminish
together with 6 while @, increases, and vice versa. For 5 < ¢ there will be a single root 6;, and for 6> 6é* there will

be the single root 63. The critical values 69 and 6* and the corresponding points 8.s and 6, of merging of the roots e, 6,
and 6., 8, are found from the equations

Y0, 8)=0, ay/db=0. (3.3)
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If (3.3) has no positive roots, then ¥(8) will have only one root for any §.

Fig. 2.

dg/p < 0). Then every

Let us assume that in the 6 p-plane the curves run in the direction of decreasing ¢ (d¢
6+ ap for some 0 = §;

curve leaving the point 4 = 4,., p = 0 {(we denote it by simply ;) and crossingthe straight line ¢
obviously ensures a solution of the inverse 9+ given, ! unknown)problem (3.1), (3.2) and vice versa {§; will be the value

of 6 at the entrance to the layer).

Fig. 3.

In the upper half-plane the motion along the curves takes place from right to left (p > 0, hence df < 0) and vice
versa in the lower half-plane. The points 8, 6;,8;(p=0) are singular. Study of the behavior of the curves in the vicinity
of these points [7] shows that 6; and 6, are saddles, while 6, is either a node {for 4y’ (8 < 1), or a focus (for 4av’ (8> 1).
In this case the curves approach the point 6, and, consequently, there are no solutions with 8, = 8, (except for the
trivial solution 6= 6. for 6_= 8). Two branches leave from both points 6; and 8;, while a single branch of the curve
leaves from the points 6, &= 0, (n= 1,2,3 ) yielding in the vicinity of these points

p=signy, V9. /ai0,—0]" E=— VI, |0, —6[" v,=¢(,), 0,50,
p=k(0,—8), E=—o0 (0<k<oo), 6,=10; 8 . (3.4)

Let & <8< 8% i.e., ¢(6) has three roots. Then, as shown in [7], the curves 1; and 1; (Figs. 2~4) leaving from
6; and ; cross the 6-axis at the points 6 * and &, respectively. Three cases of location of these points, which define the
form of the integral curve field, are possible:

1. By < 0% << B,, B, < 60 <C O, (Fig, 2).
2. 0% = oo, 60> 6, (Fig. 3),
3. 6% < 0, 8= —oc (Fig, 4).

Approximate estimates were obtained in [7] for the values of §* and 60, from which it follows that case 1 ocecurs
for any a if Q = 0 (which is equivalent to 8 = &,), while case 2 will occur for « < o¥ (8), if @ = 0 (a* decreases with
increase of @. If @ > a*, for ¢ < 0 (8 < 5, case 2 will occur, while case 3 will oceur for ¢ >0 (6> §,). Here

8, 8. _
QZS $(6) 48, 60:%(932.—812) [S (D(G)dejl ' . (3.5)
-1} 8

The curve leaving the point 8, < ¢,, like the left branch of the curve leaving 6; [7], always runs to the left in the
upper half-plane. Therefore if 6_<6,. it always crosses the straight line 6= 6_+ op for some 6= 6, < 6, {(and one time
only, since — s < dp/db < 1/a, for 6 <0, p>>0. in accordance with (3.1)). The value of & (8) decreases monotonically
along the curve, beginning from ¢ = 0 for 8= ¢,. Therefore:
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1) there is always a unique value of the reactor length ;= —& (8. 6,) > 0, for which there will exist a regime with
any given 6, <9, and 6_<0,, i.e., the inverse problem (3.1), (3.2) has in the region 6,<8, a unique solution for 8_<8.;

2) for any given << there is always a unique 6_g 6,, for which there exists a regime with any given 6, <8, (£ —
is the length corresponding here to the given 6, and 6. = —E/ RT,). We shall see later that with increase of 6, the value of
¥ increases, approaching infinity as 6.+ approaches 6;. '

In accordance with (3.4) I = oo for 6,=06, and / = 0 for 8,=0_. Since the problem solution will obviously depend
continuously on 6+, the values of i(6,,8.) corresponding to the given 6_< 6, for different 6, =[0_, 6,1 fill continuously the
interval [0,<]. Consequently, for any given I = 0 and 8.<8; there always exists a regime with 8, 18, 6.

Let us show that there will be only one such regime. To do this we make the following change of variables in (3.1),
(3.2):

u=0—0)/7 p=p/y, v=0,—0)/0—0) 0<T<L OISO (3.6)

Then problem (3.1), (3.2) reduces to the form (2.1), (2.2) and

e )= (wy+ 0)>0, up,= 6, — 0_ (0 <u<uy),
@) =09 B ;Y@ + )= @=L O —9@® (B=uy, (3.7

Hence g, (0.)<0, %o (8) <0 and % )= 8 — 8_) @" () = 0 for 6_< 0 <6, since 6 < 6.~

Consequently, y, (6) <o on the entire segment 8_ <8< 8, i.€., x (8) <0 (0< ¢ < u,), and in accordance with section
2 the solution of the direct problem in the region 8, < ¢, for 6_< ¢, is unique.

We find similarly that both the inverse and the direct problems (3.1), (3.2) have in the region 8, < [0,, 6.1 a unique
solution for o_ > 6,.

The curve p @, 0,), leaving the point o, = (v, 6) like the right branch of the curve leaving 6, [7], runs to the right
in the lower half-plane, crosses the straight line 6 =6, at the point p= —p%, and since dp/d6~>1/a for 8: < 8<C8;, p <0,
in cases 1 and 3 (Figs. 2,4) it provides a solution only for 6_& [8,, 8+ api]. In this case, as follows from Figs. 2 and
4, if pt +0, then for e_>> 0 — ¢p}” intersection with the straight line 6= ¢_+ op occurs several times (#+* is the
second crossing of the straight line @ = 6;). In other words, for 8, [8;, 8], 8_ & [6;, 62 + apil the inverse problem always
exists, and for 6_ < [0 — ap} ¥, 6: + ap}] its uniqueness is violated as a result of solutions which pass one or more times
through the value ¢ — g, The quantities @ (for 6_ sufficiently close to 6;) or p in these solutions lose their monotonicity,
and therefore we call such solutions oscillating. It can be shown from qualitative considerations that these solutions
will obviously be unstable. We arbitrarily call the solutions which do not pass through 6; monotonic.

Case 2 (Fig. 3) differs in this region in that for o, = [6,, 63] and for 8 > 6.+ apithere is a single oscillating solution
which passes through 6 =6: and 0= 6,.

Just as before, in the region in question for any given i<¢,0 there is always a unique value 6_ for which there
exists a unique monotonic regime with any given value 6, =1[6,, 621 (1,° corresponds here to the given 6+ and 6_= 8; + ap ¥,
i.e., 1,0= —E (62, 0,)).

Similarly to the preceding, we find that monotonic solutions of the direct problem in the region 6, < [6,, 6] exist
for o_<1[6,,0: for any I and for o_ & [6:,.6: + ap*] only for 1> (lo is the smallest value of 1(8,,8.) for curves with 64
from the interval in question which cross the straight line 8= 6_+ ap, i.e., inthepresent case, for whichp.* > (6: — 0.) / a).
Making the replacement (3.6) in (3.1), (3.2), we obtain problem (2.1), 2.2).

For 6_<18,, 6;] we have

%o (B) =0, % (0) > 0; 0 < 0 fore, <80, it 8_<0™;
%, < 0 for 6, <86, x5 >> 0 for 8~ <0 < 6, it e_>06.
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Therefore if 6_ <0~ or 6_>0~, but %, (6™) >0, i.e., in accordance with (3.7) 6_<6° (6.°>67), where
00 =8~ —p(0™)/ ¥ (67), (3.8)

thenx, 0 >0, <6< 06_). However, if 6_> 6., then g, (0) has two roots.

Fig, 4.

For 6_& 6., 8: + ap*] the function x, (6) (8.7) varies in the interval [6;, 8.}, since here 8§, < 8. always. In this case
%o (8) >0, ¥, B <0, i.e., x (9 for 6, <8< 6. has a single root.

Consequently, in accordance with section 2, if 6~ 6, or 6.9 > 8, then for 6_ = [6,, %], and in the opposite case for
0_ =18, 621 the direct problem has in the region 6, < {6, 8:] a unigue monotonic solution.

Foro_c10.° 6., if 6« 0.0« 0, and also for 6_ (0, 62 + ap}, I1>1° it has one or more such solutions, and from
the gualitative considerations of section 2 it follows that in the first case there will be no more than three solutions and
in the second case no more than two.

Similar results are obtained for the region 6, = [6., 8,1

Because of lack of space we do not present here the approximate estimates for p* and p,*, nor for the
corresponding values of po and p,® in the region 6, = [6,, 6,] (Figs. 2~4), which are obtained similarly to the estimates
for 6 and ¢* [7]. We simply note that these values increase with increase of a, the size of the corresponding interval,
and the value of iy 0 on this interval.

If the function ¢ (8) can be represented on the intervals in question in the form of power-law series, then the
values of p* and p’ are obtained in the form of series in integral powers of (8, — 6,) and (8, — 6,) respectively (by
suitable choice of T we can ensure that the latter are smaller than unity) and p.* and p,° in the form of series in
powers of |8, — 9, |,

Thus, for 8 < 8 < 8 we finally have the following:

For 8_< (8, 6 — ap9), 1l.€., for 8_< 6, if 6; < 0 — ap®and for 6_ < 8,— ap®, if 8, — ap® < 8y, and also for 6_ > (8,, 9 + ap*)
in the reactor of arbitrary length ¢ there always exists a unique monotonic regime, and 6, = [0_, 6, and 8, = [8;, 8 ],
respectively.

For o_< 6, 6, — ap?] if 6; < 8, — ap®, and also for 6_ < [0, — ap?, 8], if I << »_ monotonic regimes exist only with
0, €16y, 6_j. Similarly, for 8_c (6. + ap*, 6,], and for 6,> 6, + ap* and for 6_ (8, 62 + ap*|, if 1< o, there exist regimes
only with e, = [6_, 8. In this case, if ¢_ falls in the interval between 6~ and 8, then for 6_=16_, 8, the possibility of the
existence of several (no more than three) such regimes is not excluded. In the remaining cases these regimes are
unique.

In the case a>>a* (8) in reactors of sufficient length for 4_ < B —ap?, if 8, <8< &% (Fig. 4), and for 6_> 6, - ap*,
if & <8< 8, (Fig. 3), there are also oscillatory regimes with 6, < [6%, ¢;] and 6, < [8;, 6%] respectively (6, from (3.5)).
In the remaining cases mentioned above there exist only monotonic regimes.

For 6_ = [0, — ap?, 0,4+ ep*] and I>1_(®_ decreases as 6_ approaches 0, so that #_ =0 for 6.=8,) it is possible to
have simultaneously monotonic regimes with 6,<(8,.6.) and with @, > [0,, 6_], while for a_== 6, the unstabletrivial regime
6 =90, Is also possible. Moreover, for 6_ < [6, — ap®, 8. there will be one or more regimes with 6, >6,, and for 6_

& [6;, 0, + ap*] with 8, < 6, (from qualitative considerations no more than two). However the regime with 8, << 8_
for 6_ 10, — 2p°, 8} and with 0, > 6_ for 8_ < [0,, 0, +- «p*] is unique except for the case in which ¢ falls in the interval
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between 6™ and 6, and §- falls between 8_ and 6,, for which we can expect several (from qualitative considerations no
more than three) such regimes.

Here the value §_= 6, - ap* can be called the ignition temperature, since this is the maximum temperature of the
supplied mixture for which the regime with 6, << 6, can still exist. With increase of 8 only the regime with 8, >6_>
8, + ap*. becomes possible. Similarly, 8 = 8, — ap¢ can be termed the extinction temperature.

Along with the monotonic solutions in the 6 interval in guestion, for sufficiently large I there may also be
oscillating solutions with 8,  {8,, 6,1, which pass one or more times through thevalue 6;. Their possibility increases
with approach of - to 6, and increase of a. It follows from qualitative considerations that these solutions will be
unstable and lead to one of the monotonic regimes [7].

Now assume that 6 < 6, and 6> 8*, i.e., that system (3.3) has no solutions. Then ¢ (8) has only a single positive
root 6; (or 65) and we find similarly tothepreceding that in reactors of arbitrary length I for any a and §.. there exist
stationary regimes only with 8+ located in the interval between - and 6; (0- and 6;). For §~ <5 <8, 0. >6°_(8~=
10 (6~y< &, and 6_>0~ from (3.8)), for 8> &%, 6_ < oo_(where 6°_< ¢~ ) and when (3.3) has no roots, for 5>~ 6.<60
(where 8_0< (0, 6~)) one or more of the indicated regimes is possible (from qualitative considerations no more than three).
In the remaining cases the regimes are unique.

Thus, the low-temperature regime which is most often used in chemical processing, when the maximum
temperature 6, reached at the exit from the layer does not exceed 6;, exists in reactors of arbitrary length for &< 8,
6. <6, and 8, &10_, 8. If 8 <6< 8* and 8, — ap® < 6y, then for 6_ €18 — 2p®, 8:] in reactors of length i >k along with
the single low-temperature regime there also exist high-temperature (from qualitative considerations no more than
three) regimes with 6, = 6,,8,l. In the remaining cases the low temperature regime is unique if we do not consider the
oscillating solutions with 8, & [6%,8,]), which are possible in reactors of sufficiently great length for a > a* (3), 8, < 8 < 8%,
where 8, > 60 from (3.5). If system {(3.3) has no roots, then for any 6 for 8 < 6 there exists only the regime with 8, <6,
With increase of 6 the value of 6; increases monotonically.

With reduction of @, and also for sufficiently small I or 6, the region of ambiguity of the solutions becomes
smaller. Thus, extending the results obtained in [8] to our problem, we can state that if

@) <1/8+ 44 -4/aOr O @) <L/6+1/1,
then for any initial temperature §- of the supplied mixture there exists in the reactor a unique stationary regime.
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